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Accurate radiative transition probabilities of diatomic electronic systems are required to calculate the dis- 

crete radiation of plasmas. However, most of the published transition probabilities are obtained using 

older spectroscopic constants and electronic transition moment functions (ETMFs), some of which devi- 

ates greatly from experimental data. Fortunately, a lot of new spectroscopic constants that include more 

anharmonic correction terms than the earlier ones have been published over the past few years. In this 

work, the Einstein coefficients, Franck–Condon factors and absorption band oscillator strengths are cal- 

culated for important diatomic radiative transition processes of N 2 -O 2 , CO 2 -N 2 and H 2 plasmas produced 

in entering into the atmosphere of Earth, Mars and Jupiter. The most up-to-date spectroscopic constants 

are selected to reconstruct the potential energy curves by the Rydberg–Klein–Rees (RKR) method. Then 

the vibrational wave functions are calculated through the resolution of the radial Schrödinger equation 

for such potential energy curves. These results, together with the latest “ab-initio” ETMFs derived from 

the literature are used to compute the square of electronic-vibrational transition moments, Einstein co- 

efficients and absorption band oscillator strengths. Moreover, the Franck–Condon factors are determined 

with the obtained vibrational wave functions. In the supplementary material we present tables of the ra- 

diative transition probabilities for 40 band systems of N 2 , N 

+ 
2 

, NO, O 2 , CO, CO 

+ , CN, C 2 and H 2 molecules. 

In addition, the calculated radiative lifetimes are systematically validated by available experimental re- 

sults. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Accurate radiative transition probabilities are key to scientific

research areas including plasma optical diagnostics [1,2] , quanti-

tative spectroscopy [2,3] , analyzation of emission from gas dis-

charge and afterglows [4,5] , radiation modeling of atmospheric en-

try [6–8,58] , etc. In particular, strong shock waves, formed in front

of the vehicles during hypersonic flights, translate part of the ki-

netic energy of the vehicles into internal energy of the gases. The

high-temperature gases will radiate, and the emitted radiation may

also contribute to the heat flux suffered by the vehicles, which

will be very important for vehicles that enter into the atmosphere

at very high speed. Hence, the prediction of radiation for high-

temperature gases in shock layers is required for the efficient de-

sign of thermal protection systems. The emission coefficients εσ of
∗ Corresponding author at: School of Energy Science and Engineering, Harbin In- 

stitute of Technology, 92 West Dazhi Street, Harbin 150 0 01, China 

E-mail address: lhliu@hit.edu.cn (L.H. Liu). 
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igh-temperature gases is generally given by 

 σ = 

∑ 

ul 

A ul 

4 π
hc v ul N u f ul ( v − v ul ) (1)

here A ul is the Einstein coefficients N u denotes the population of

he upper transition levels. v ul is the wavenumber, and f ul ( v − v ul )

s the spectral line shape of the transition. Einstein coefficients, as

 form of radiative transition probabilities, are vital to the deter-

ination of the emission coefficients that are utilized further to

alculate the radiative heat flux. 

Einstein coefficients, absorption band oscillator strength and

ranck–Condon factors are three forms of the radiative transition

robabilities. The first two parameters can be calculated from the

quare of electronic-vibrational transition moment and Franck–

ondon factors are determined with the vibrational wave func-

ions. Moreover, the square of electronic-vibrational transition mo-

ent can be calculated using Franck–Condon factors q v ′ v ′ ′ ( v ′ and

 

′ ′ are vibrational levels in the upper and lower electronic levels

f transition, respectively), electronic transition moment function



Z. Qin et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 202 (2017) 286–301 287 

(  

[(
 

i  

l  

o  

g

(
w  

r  

w  

t

 

t  

v  

f  

t  

o  

e  

a  

[  

o  

c  

g  

t  

s  

c  

n  

b  

c  

r  

c  

t  

s  

v  

s  

t

 

a  

l  

p  

t  

i  

f  

s  

t  

p  

o

2

C  

t  

i  

[  

e  

p  

b  

B  

t  

C

 

s  

s  

c  

t  

C  

s  

T  

r  

t  

t  

E  

s  

f  

a  

g  

R  

a  

t  

I

2

 

v  

a  

a  

c  

w

r

w  

o  

m

i  

b  

e  

l

G

B

w  

l  

d  

b  

c  

a  

t  

E  

r

r

 

a  

g  

t  

t  

t  
ETMF) R e ( r ) and r-centroids r v ′ v ′ ′ in the r-centroid approximation

9,10] : 

R 

v ′ v ′′ 
e 

)2 ∼= 

[ R e ( ̄r v ′ v ′′ ) ] 
2 q v ′ v ′′ (2) 

Such approximations often need to be combined with the lim-

ted experimental data to calculate Einstein coefficients for the

arge number of band systems. Another more rigorous method to

btain the square of electronic-vibrational transition moment is

iven by 

R 

v ′ v ′′ 
e 

)2 = 

[ ∫ ∞ 

0 

ψ v ′ ( r ) R e ( r ) ψ v ′′ ( r ) dr 

] 2 
(3) 

here r is the internuclear distance, ψ v ′ ( r ) and ψ v ′ ′ ( r ) are the cor-

esponding radial vibrational wave functions and R e ( r ) is the ETMF,

hich is an average of the electric dipole moment with respect to

he electronic wave function. 

Thus, in order to precisely determine the electronic-vibrational

ransition moment, it is necessary to obtain the parameters of the

ibrational wave functions and the ETMF. The vibrational wave

unction can be obtained by solving the radial Schrödinger equa-

ion over the potential energy curve for a selected electronic state

f a molecule. And the potential energy curves of the different

lectronic states of a diatomic molecule can be determined by the

b-initio method [11] or the Rydberg–Klein–Rees (RKR) method

12–14] . The ab-initio method, based on quantum chemistry the-

ry, can predict the potential energy curves to a good level of pre-

ision, whereas the RKR method, a more straightforward method

rounded on experimental spectroscopic constants, can predict po-

ential curves more accurately for internuclear distances where the

pectroscopy constants are valid. Therefore, the RKR method is

hosen to reconstruct the potential curves for the efficient inter-

uclear distances in this paper. The ETMF can be determined by

and strength measurements, or obtained by quantum-mechanical

alculations which have been proved to attain an accuracy compa-

able to that of many band intensity measurements. Besides, such

alculations cover a wider range of internuclear distances than

hose by the r-centroid approximation method [15] . For these rea-

ons, the relation of Eq. (3) is used to calculate the electronic-

ibrational transition moments taking advantage of the accurate

pectroscopy constants and ab-initio ETMFs for all the band sys-

ems considered here. 

In view of the important role of transition probabilities for di-

tomic molecular band systems of plasmas in hypersonic flights, a

ot of data of transition probabilities have been published over the

ast few decades. Krupenie [16] gave a critical review and comple-

ion of the observed and predicted spectroscopy data of O 2 and its

ons O 

−
2 

, O 

+ 
2 

and tabulated many of these transition probabilities

or several oxygen band systems. Lofthus and Krupenie [17] pre-

ented many of these transition probabilities for several band sys-

ems of N 2 and its ions N 

−
2 

, N 

+ 
2 

. Subsequently, many papers were

ublished regarding transition probabilities for some band systems

f N 2 , N 

+ 
2 

, O 2 , NO, CO, CO 

+ , CN, and C 2 diatomic molecules [18–

5] . More recently, da Silva and Dudeck [26] calculated Franck–

ondon factors, Einstein coefficients and absorption band oscilla-

or strengths for the most prominent diatomic radiative transitions

n high-temperature CO 2 –N 2 plasmas. In addition, Chauveau et al.

27] constructed a spectroscopic database for all the contributing

lectronic systems of air diatomic molecules based on transition

robabilities, whose correctness and precision had been proved

y measured radiative lifetimes. A similar approach was taken by

abou et al. [28] to obtain transition probabilities of diatomic elec-

ronic band systems for CO 2 –N 2 plasma, including CO, CO 

+ , CN and

 2 molecules. 

However, the transition probabilities are still incomplete and

ome of them are less accurate. Moreover, many spectroscopic con-

tants and ETMFs are so old that can be superseded by more re-
ent measurements and calculations. For these reasons, the poten-

ial energy curves of electronic states of N 2 , N 

+ 
2 

, NO, O 2 , CO, CO 

+ ,
N, C 2 and H 2 molecules have been reconstructed by RKR method

tarting from the selected most up-to-date spectroscopic constants.

hen the vibrational wave functions are attained by solving the

adial Schrödinger equation over the reconstructed energy poten-

ial curves. Finally, we calculate the transition probabilities for all

he band systems considered using vibrational wavefunctions and

TMFs available in the literature. To validate the calculated tran-

ition probabilities, the vibrational radiative lifetimes calculated

rom Einstein coefficients are systematically compared with avail-

ble experimental results and other calculations. This paper is or-

anized as follows. In Section 2 , we describe the details of the

KR method. The results of reconstructed potential energy curves

re given in Section 3 . In Sections 4 and 5 , the results of transi-

ion probabilities and radiative lifetimes are given and discussed.

n Section 6 , conclusions are drawn. 

. Methods of calculation 

The RKR method is a widely used first-order semiclassical in-

ersion procedure for reconstructing potential energy curves of di-

tomic electronic states. This theory is extensively discussed in

 number of literatures and monographs [12–14,29–30] . The key

onclusions of this theory are made up of two Klein integrals,

hich are given by [29] 

 2 ( v ) − r 1 ( v ) = 2 

√ 

h̄ 

2 

2 μ

∫ v 

v min 

dv ′ 

[ G v − G v ′ ] 
1 / 2 

= 2 f ( v ) (4) 

1 

r 1 ( v ) 
− 1 

r 2 ( v ) 
= 2 

√ 

2 μ

h̄ 

2 

∫ v 

v min 

B v ′ dv ′ 

[ G v − G v ′ ] 
1 / 2 

= 2 g ( v ) (5) 

here r 1 ( v ) and r 2 ( v ) are inner and outer classical turning points

f the potential curve for a given vibrational level, μ is the reduced

ass of the molecule, and � is the reduced Planck’s constant, v min 

s the non-integer effective value of the vibrational quantum num-

er at the potential minimum, namely the zero of vibrational level

nergy G v , B v is the inertial rotational constant for that vibrational

evel, and they can be expanded as 

 v = 

n ∑ 

l=1 

Y l, 0 ( v + 1 / 2 ) 
l = ω e ( v + 1 / 2 ) − ω e χe ( v + 1 / 2 ) 

2 + · · · (6) 

 v = 

m ∑ 

l=0 

Y l, 1 ( v + 1 / 2 ) 
l = B e − αe ( v + 1 / 2 ) + · · · (7) 

here Y l ,0 and Y l ,1 are Dunham coefficients rearranged by equi-

ibrium spectroscopic constants that are adjusted on experimental

etermined vibrational energy at each vibrational quantum num-

er v . The most accurate available spectroscopic constants that in-

lude more anharmonic correction terms are selected. The values

nd references of spectroscopic constants selected for each elec-

ronic state are presented in Appendix A . Rearrangement of the

qs. (4) –( 5 ) yields the RKR classical turning point expressions [29] :

 1 ( v ) = 

√ 

f ( v ) 
g ( v ) 

+ f 2 ( v ) − f ( v ) (8) 

 2 ( v ) = 

√ 

f ( v ) 
g ( v ) 

+ f 2 ( v ) + f ( v ) (9) 

In order to remove the singularity in the integral f ( v ) and g ( v )

t v ′ = v and maintain high accuracy, the expressions of f ( v ) and

 ( v ) have been integrated using a 128 points Gauss-type quadra-

ure. And for the sake of calculating the vibrational wave func-

ions, it is important to interpolate the potential energy curve be-

ween r ( v ) and r ( v ) and extrapolate that potential energy curve
1 2 
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beyond this internuclear distance. The interpolation is done with a

high-order Lagrange polynomial [31] . Outside this region, the RKR

potential energy curve has been extrapolated by using a repulsive

function U rep ( r ) for the shorter internuclear distance and a Hulburt

and Hirschfelder potential U HH ( r ) [32] for the longer internuclear

distance, which can accurately give continuous single-well poten-

tial energy curve. These two functions are written as [32] 

 rep ( r ) = 

a 1 

r b 1 
(10)

 HH ( r ) = D e 

[
1 − e −a 2 ( r−r e ) 

]2 

+ D e 

[
b 2 a 

3 
2 ( r − r e ) 

3 e −2 a 2 ( r−r e ) ( 1 + a 2 c 2 ( r − r e ) ) 
]

(11)

where D e and r e refer to the dissociation energy of the electronic

(relative to bottom of the potential energy curve) and the equilib-

rium internuclear distance, respectively. a 1 , b 1 , a 2 , b 2 and c 2 are

floating parameters that need to be adjusted to ensure continuity

with the potential energy curve and they are adjusted in order that

each extrapolation function fits a significant part of the extremity

of the reconstructed potential energy curve, too. 

The reconstructed potential energy curves are utilized in ra-

dial Schrödinger equation to obtain the vibrational wave functions,

and the ETMFs derived from references are summarized in Section

3 . The knowledge of ETMF R e ( r ) and vibrational wave function

ψ v ( r ) allows determining the transition probabilities such as Ein-

stein coefficients A v ′ v ′ ′ , absorption band oscillator strengths f abs 
v ′ v ′′ ,

the Franck–Condon factor q v ′ v ′ ′ and radiative lifetimes τ v ′ through

the following expressions [33,34] : 

A v ′ v ′′ = 2 . 026 × 10 

−6 η3 
v ′ v ′′ 

2 − δ0 , �′ +�′′ 

2 − δ0 , �′ 

(
R 

v ′ v ′′ 
e 

)2 
(12)

f abs 
v ′ v ′′ = 3 . 0376 × 10 

−6 ηv ′ v ′′ 
2 − δ0 , �′ +�′′ 

2 − δ0 , �′ 

(
R 

v ′ v ′′ 
e 

)2 
(13)

q v ′ v ′′ = 

(∫ 
ψ v ′ ( r ) ψ v ′′ ( r ) dr 

)2 

(14)

τv ′ = 

1 ∑ v ′′ max 

v ′′ =0 A v ′ v ′′ 
(15)

where ηv ′ v ′′ is the wavenumber of the vibrational band system. �′ 
and �′ ′ are the projections of the electronic orbital angular mo-

mentum on the internuclear axis for the upper and lower elec-

tronic levels, respectively. 

3. Reconstructed potential energy curves 

The most accurate and up-to-date spectroscopic constants and

the dissociation limits, which are given in Appendix A , have been

selected from the literature. The equilibrium internuclear distance

r e of the potential energy curve is selected from Ref. [40] when

that is unavailable in the references given in Appendix A . The tra-

ditional spectroscopic constants are usually rearranged into Dun-

ham coefficients. The relation between Dunham coefficients and

traditional spectroscopic constants can be easily deduced from Eqs.

(6) –( 7 ). Note that v max is the maximum v value of experimen-

tal measurements to adjust the potential energy curve for the ex-

trapolations described in Eqs. (10) –( 11 ). Namely, v max is the max-

imum vibrational level where the Dunham coefficients are valid.

Based on accurate spectroscopic constants, the reconstructed po-

tential energy curves can be obtained by the method elaborated in

Section 2 . The resulting potential energy curves are potted in Fig.
 for the 44 electronic states involved in the radiative transitions

n Table 1 . Furthermore, for some states, the extrapolation regions

re strongly perturbed so that such extrapolations are question-

ble. The notations of these states are marked in red and italics in

ig.1 and the corresponding potential energy curves always show

eak values. 

The ETMFs for each electronic transition system are obtained

rom references given in Table 1 . For most of the electronic transi-

ion systems, we select the “ab-initio” ETMFs to calculate the radia-

ive transition probabilities. Some of the ETMFs determined by ex-

eriments are selected when the corresponding “ab-initio” ETMFs

re not available in the literature. Details of the selected ETMFs are

iven in Section 5 . 

. Radiative transition probabilities 

Tables of radiative transition probabilities (Einstein coefficients,

bsorption band oscillator strengths and Franck–Condon factors)

ave been given in supplementary material for each electronic

ransition system of N 2 , N 

+ 
2 

, NO, O 2 , CO, CO 

+ , CN, C 2 and H 2 di-

tomic molecules. 

. Vibrational radiative lifetimes 

Details of the selected ETMFs for different electronic transi-

ion systems of N 2 , N 

+ 
2 

, NO, O 2 , CO, CO 

+ , CN, C 2 and H 2 diatomic

olecules and comparisons with the theoretical and experimental

adiative lifetimes in the literature are given in this section. For

ost of electronic transition systems, our calculated results are in

ood agreement with the available experimental results. 

.1. N 2 transitions 

For the First-positive system, Chauveau et al. [27] calcu-

ated two vibrational radiative lifetimes with the ETMFs in Refs.

63,145] and gave a list of experimental results from various ref-

rences. We select the latest ab-initio ETMF of Ref. [172] to obtain

adiative transition probabilities, from which the vibrational radia-

ive lifetimes of the B 

3 g electronic state of N 2 are calculated and

hown in Fig. 2 (a). Fig. 2 (a) also shows different theoretical and

xperimental results from the references. Most of the experimen-

al results are distributed between two calculated vibrational ra-

iative lifetimes from Chauveau et al. [27] . Our calculated results

re approximately the mean of these two results and are in good

greement with the experimental results, especially with the latest

nes from [91] . 

For the Second-positive system, we choose the ETMF in Ref.

63] . Fig. 2 (b) gives the various theoretical and experimental vi-

rational radiative lifetimes of the C 3 u electronic state of N 2 . The

xperimental radiative lifetimes scatter to a large extent and have

 larger range of error. Our calculated results are within the al-

owable error range of the experimental results except for v ′ = 4.

adiative lifetimes from Ref. [27] are also plotted in Fig. 2 (b) and

hese values are smaller than the present results, although they

ave been obtained from the same ETMF. 

Concerning Vegard–Kaplan system, we select the ETMF of Ref.

87] as recommended and reported by Gilmore et al. [24] . The

instein coefficients calculated in this work are in very good

greement with the results obtained by Gilmore et al. [15] .

pectroscopic observations have provided firm evidence for the

.36 ±0.27 s lifetime of the � = 0 sub-state of A 

3 �+ 
u by Sheman-

ky and Carleton [88] . The present calculated radiative lifetime is

.63 s, which is very close to the value observed by Shemansky and

arleton for the level v ′ = 0 of the A 

3 �+ 
u electronic state. 

The ETMFs selected for the Wu–Benesch, Lyman–Birge–Hopfield

nd IR afterglow systems are from Ref. [24] , which give the ETMFs
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Fig. 1. Reconstructed potential energy curves of the selected electronic states of (a) N 2 , (b) N 

+ 
2 

, (c) NO, (d) O 2 , (e) CO, (f) CO + , (g) CN, (h) C 2 and (i) H 2 molecules. 
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y fitting theoretical values or geometric mean of theoretical re-

ults from previous literatures. In the case of Wu–Benesch sys-

em, Fig. 2 (c) shows the vibrational radiative lifetimes of the W 

3 �u 

lectronic state of N 2 from this work and other references. A good

greement has been achieved between our results and the calcu-

ated results from Werner et al. [39] and Gilmore et al. [15] . With

espect to Lyman–Birge–Hopfield system, a quite good agreement

s observed in Fig. 2 (d) between our results and the theoretical re-

ults of Ref. [101] , but a deviation of about 4% is observed at v ′ = 1

etween the present radiative lifetime and the one measured by

arinelli et al. [102] . As for IR afterglow system, it is difficult to

nd the experimental radiative lifetimes of the B ′ 3 �u electronic

tate of N 2 , while the agreement between the present results and

he calculated ones from Ref. [39] is within 5% for v ′ = 0 −12. 

.2. N 

+ 
2 

transitions 

For the Meinel system, we choose the ETMF published by

anghoff et al. [66] , and a very good agreement with the experi-

ental radiative lifetimes from Ref. [104–106] is acquired, although

he present radiative lifetimes are slightly larger than the calcu-

ated ones of Ref. [27] , just as shown in Fig. 3 (a). 

Considering the First-negative and Second-negative systems, the

TMFs of Ref. [67] are used in this paper. We have plotted in Fig.

 (b) and (c) the present radiative lifetimes, theoretical radiative

ifetimes from Ref. [27] and other two experimental values of the
 

2 �+ 
u electronic state and the C 2 �+ 

u electronic state of N 

+ 
2 

. A larger

alue of radiative lifetimes are observed compared to that of Ref.

27] , but our results are closer to the experimental results. 

.3. NO transitions 

Fig. 4 (a) shows vibrational radiative lifetimes of the A 

2 � + elec-

ronic state of NO. The present calculated radiative lifetimes, which

re obtained from the ETMF of Ref. [68] , are in very good agree-

ent with the calculated ones reported in Ref. [27] . The experi-

ental results are relatively scattered, whereas our calculated re-

ults are in good agreement with the experimental results for

 

′ ≤ 2. 

In the same way as it has been used above, we have reported

n Fig. 4 (b) radiative lifetimes of the B 2 r electronic state of NO

alculated in the present work from the ETMF of Ref. [69] . They

re compared with the theoretical results of Ref. [27] and different

xperimental results from Refs. [89,109,114–116] . Our calculated ra-

iative lifetimes are closer to the experimental results of Gadd and

langer [115] . 

For the C 2 r electronic state of NO, Brzozowski et al. [89] found

he radiative lifetime of C 2 r state ( v ′ = 0, J < 4.5) is 32.0 ± 2.0 ns.

hile Smith and Read [90] obtained an upper limit of radiative

ifetime of C 2 r state ( v ′ = 0), which is τ ≤ 2.7 ns (standard devia-

ion 1.5 ns). What’s more, the levels located higher than v ′ = 0 and
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Table 1 

Electronic systems for which the transition probabilities have been calculated. 

Molecule Electronic system Upper-lower states Calculated band (0: v ′ max ,0: v ′ ′ max ) Selected ETMF 

N 2 First-positive B 3 g − A 3 �+ 
u (0:21,0:21) [172] 

Second-positive C 3 u − B 3 g (0:4,0:21) [63] 

Vegard–Kaplan A 3 �+ 
u − X 1 �+ 

g (0:21,0:21) [24] 

Wu–Benesch W 

3 �u − B 3 g (0:21,0:17) [24] 

Lyman–Birge–Hopfield a 1 g − X 1 �+ 
g (0:21,0:21) [24] 

IR afterglow B ′ 3 �u − B 3 g (0:21,0:21) [24] 

O 2 Schumann–Runge B 3 �−
u − X 3 �−

g (0:27,0:27) [64,65] 

N 

+ 
2 

Meinel A 2 u − X 2 �+ 
g (0:27,0:27) [66] 

First-negative B 2 �−
u − X 2 �+ 

g (0:8,0:21) [67] 

Second-negative C 2 �+ 
u − X 2 �+ 

g (0:6,0:21) [67] 

NO γ A 2 � + - X 2 r (0:12,0:22) [68] 

β B 2 r - X 
2 r (0:37,0:22) [69] 

δ C 2 r - X 
2 r (0:8,0:22) [70] 

ε D 2 � + - X 2 r (0:9,0:22) [71] 

γ ′ E 2 � + - X 2 r (0:4,0:22) [72] 

β ′ B ′ 2 �- X 2 r (0:11,0:22) [72] 

11,0 0 0 Å D 2 � + - A 2 � + (0:8,0:8) [71] 

Infrared X 2 r - X 
2 r (0:22,0:22) [73] 

CO Infrared X 1 � + - X 1 � + (0:50,0:50) [74] 

Fourth-positive A 1 - X 1 � + (0:22,0:50) [75] 

Hopfield–Birge B 1 � + - X 1 � + (0:1,0:50) [77] 

Third-positive b 3 � + - a 3 r (0:2,0:18) [78] 

Triplet d 3 �i - a 
3 r (0:20,0:20) [79] 

Asundi a ′ 3 � + - a 3 r (0:20,0:18) [80] 

Angström B 1 � + - A 1  (0:1,0:21) [77] 

CO + Comet–Tail A 2 i - X 
2 � + (0:38,0:38) [81] 

Baldet–Johnson B 2 � + - A 2 i (0:50,0:50) [81] 

First-negative B 2 � + - X 2 � + (0:25,0:35) [81] 

CN Red A 2 i - X 
2 � + (0:38,0:38) [171] 

Violet B 2 � + - X 2 � + (0:27,0:36) [82] 

LeBlanc B 2 � + - A 2 i (0:25,0:38) [171] 

C 2 Philips A 1 u −X 1 �+ 
g (0:35,0:21) [83] 

Mulliken D 

1 �+ 
u −X 1 �+ 

g (0:22,0:21) [84] 

Deslandres–D’Azambuja C 1 g - A 
1 u (0:9,0:32) [85] 

Ballik and Ramsay b 3 �−
g −a 3 u (0:43,0:43) [83] 

Swan d 3 g - a 
3 u (0:22,0:33) [83] 

Fox–Herzberg e 3 g - a 
3 u (0:35,0:35) [85] 

dc d 3 g −c 3 �+ 
u (0:13,0:17) [83] 

H 2 Lyman B 1 �+ 
u −X 1 �+ 

g (0:36,0:36) [86] 

Werner C 1 u −X 1 �+ 
g (0:12,0:22) [86] 
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C  

C  
J = 4.5 are strongly predissociated, leading to shorter radiative life-

times of C 2 r state ( v ′ > 0). So we don’t present comparison with

the experimental results. The ETMF selected for δ system is that of

Ref. [70] . 

Concerning the D 

2 � + electronic state of NO, both the ε system

and 11,0 0 0 Å system contribute to the vibrational radiative life-

times of NO D 

2 � + electronic state. The radiative lifetimes calcu-

lated from the ETMF of Ref. [71] are larger (about 5–18%) than the

calculated ones of Ref. [27] , although they use the same ETMF. Our

calculated results are within the error bars of experimental results

for v ′ = 0, 3, as shown in Fig. 4 (c). 

As to the B ′ 2 � electronic state of NO, Fig. 4 (d) shows the radia-

tive lifetimes of vibrational levels of the present results, the theo-

retical values of Ref. [27] and various experimental results of Refs.

[89, 118–120] . The ETMF of Ref. [72] has been used in this paper.

The different experimental radiative lifetimes are distributed desul-

torily and our calculated results are bounded by these experimen-

tal results. 

The infrared system of NO greatly contributes to the discrete

radiation of the N 2 –O 2 plasma in the infrared region and has been

studied thoroughly in the literature. We select the ETMF of Ref.

[73] to calculate the Einstein coefficients that agree well (about

1.5%) with the calculated ones of Ref. [27] . Compared to the ex-

perimental results [146–151] , a deviation of about 9% is observed

g  
t ( v ′ , v ′ ′ ) = (1, 0). It should be also noted that a deviation is about

% in comparison with the experimental results [146,147] at ( v ′ ,
 

′ ′ ) = (2, 0). 

On the whole, although experimental radiative lifetimes of the

O A 

2 � + , B 2 r , D 

2 � + , B ′ 2 � electronic states exhibit a quite

arge dispersion, our calculated results are bounded by these ex-

erimental data. 

.4. O 2 transitions 

For O 2 Schumann–Runge band, the ETMF of Ref. [64] , shifted

y −0.049 a 0 as suggested by Friedman [65] , is used in this work

ith the extrapolations of the ETMF from Ref. [65] . As shown in

ig. 5 , the absorption oscillator strengths obtained using this ETMF

re slightly lower than the calculations of Chauveau et al. [27] ,

hereas the results are between the experimental results from Ref.

121] and Ref. [122] for v ′ = 0 −19, v ′ ′ = 0, and they are closer to the

xperimental results [122] for v ′ = 0 −19, v ′ ′ = 1. 

.5. CO transitions 

Due to the great contribution to the discrete radiation of the

O 2 –N 2 plasma in the VUV region, the Fourth-positive system of

O have been widely investigated, and different ETMFs have been

iven in the past few years. Field et al. [123] obtained this ETMF by
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Fig. 2. Comparison of the vibrational radiative lifetimes calculated in the present work for N 2 , (a) B 3 g electronic state with the results of Refs. [27] a (calculation with 

ETMF of Ref. [63] ), [27] b (calculation with ETMF of Ref. [145] ), [91–96] , (b) C 3 u electronic state with the results of Refs. [27] , [97] a (Phase-shift method), [97] b (Delayed- 

coincidence method), [98–100] , (c) W 

3 �u electronic state with the results of Refs. [103,39,15] , (d) a 1 g electronic state with the results of Refs. [101-102] . 

Fig. 3. Comparison of the vibrational radiative lifetimes calculated in the present work for N 

+ 
2 

, (a) A 2 u electronic state with the results of Refs. [27,104–106] , (b) B 2 �+ 
u 

electronic state with the results of Refs. [27,107] , (c) C 2 �+ 
u electronic state with the results of Refs. [27,108] . 
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Fig. 4. Comparison of the vibrational radiative lifetimes calculated in the present work for NO, (a) A 2 � + electronic state with the results of Refs. [27,68,90,109–113] , (b) 

B 2 r electronic state with the results of Refs. [27,89,109,114–116] , (c) D 2 � + electronic state with the results of Refs. [27,89–90,112–113,117–118] , (d) B ′ 2 � electronic state 

with the results of Refs. [27,89,118–120] . 

Fig. 5. Comparison of absorption oscillator strengths calculated in the present work 

for O 2 Schumann–Runge band with the results of Refs. [27,121,122] 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Vibrational radiative lifetimes of the b 3 � + electronic state of 

CO: comparison with the experimental results. 

This work Experimental results 

Ref. [152] Ref. [124] Ref. [78] 

v ′ = 0 57.8 57.6 ±1.24 56 ±1 53.7 ±1.5 

v ′ = 1 62.6 56 ±1 64.6 ±2 

t  
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R  
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s  

t  
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l  
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v

 

t  

r  

t  

f  
measuring radiative lifetimes using synchrotron radiation. DeLeon

[75,76] deduced the ETMF by using the laser induced fluorescence.

And Kirby and Cooper [77] calculated this value through the “ab-

initio” method. We select the ETMF of DeLeon which enables to

obtain a good agreement with the experimental radiative lifetimes

of Ref. [123] , just as shown in Fig. 6 (a). The calculated radiative

lifetimes are relatively dispersed, but the present results are among

other calculated values. 

For the Third-positive system, there is no “ab-initio” ETMFs for

us to use in the references that we can find. Hence, we adopt the

fitting formula from Ref. [26] obtained from experimental lifetimes

of Carlson [78] . Table 2 shows the vibrational radiative lifetimes of

the b 3 � + electronic state. The radiative lifetimes obtained using
his ETMF are in good agreement with the experimental results of

ef. [152] for v ′ = 0, and they are closer to the experimental data

f Ref. [78] for v ′ = 1. 

For the Triplet system, the only ETMF that we can find is from

ef. [79] , and the ETMF was calculated from the only equation in

ef. [79] using the measured radiative lifetimes, concluding with a

onstant of Re = 1.65 Debye. 

Considering the Asundi system, we select the ETMF of Peter-

on and Woods [80] that are calculated with CASSCF wave func-

ions rather than with CI-SD wave functions since it covers a large

alid range of internuclear distance. The calculated radiative life-

imes are shown in Fig. 6 (b) and a good agreement with calcula-

ions of da Silva and Dudeck [26] is observed. However, our calcu-

ated results are quite larger than the only experimental radiative

ifetimes of Ref. [124] we can find in the literature. The deviation

ecreases from 23% for v ′ = 4 to 11% for v ′ = 9 with the increasing

 

′ value. 

Table 3 gives the vibrational radiative lifetimes of B 1 � + elec-

ronic state with comparison to the theoretical and experimental

esults. Both the Hopfield–Birge system and Angström system are

aken into consideration here, and the ETMFs of Ref. [77] are used

or these two electronic transition systems. By comparison, a good
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Fig. 6. Comparison of the vibrational radiative lifetimes calculated in the present work for CO, (a) A 1  electronic state with the results of Refs. [26,28,77–78,123] , (b) a ′ 3 � + 

electronic state with the results of Refs. [26,124] . 

Table 3 

Vibrational radiative lifetimes of the B 1 � + electronic state of CO: comparison with the 

theoretical and experimental results. 

This work Theoretical results Ref. [77] Experimental results Ref. [153] 

v ′ = 0 32.5 33.5 24.3 ±1.8 

v ′ = 1 29.4 29.2 23.8 ±1.4 

Fig. 7. Comparison of the vibrational radiative lifetimes calculated in the present work for CN, (a) A 2 i electronic state with the results of Refs. [26,28,82,125–129] , (b) 

B 2 � + electronic state with the results of Refs. [26,28,82,125–128] . 
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g  
greement (of about 3%) is observed between the present radiative

ifetimes and the calculated results from Ref. [77] for v ′ = 0 and a

etter agreement (of about 0.5%) is observed for v ′ = 1. Whereas

ur results deviate greatly from the experimental results measured

y Rogers and Anderson [153] . 

.6. CN transitions 

Fig. 7 (a) presents the vibrational radiative lifetimes of the A 

2 i 

lectronic state of CN. As shown, the vibrational radiative lifetimes

alculated using the ETMF of Ref. [171] are in good agreement with

ost of the theoretical results [28,82,126] , although the radiative

ifetimes of da Silva and Dueck [26] calculated utilizing the ETMF

f Ref. [155] appear slightly higher than the other calculated re-

ults. As shown in Fig. 7 (a), large deviations are observed between

he calculated values and the experimental results. Besides, the

istribution of different experimental radiative lifetimes is so dis-

rderly that the difference between two experimental results for
he same vibrational level is up to more than 50% relative to the

arger radiative lifetime. Therefore, we assume that the theoretical

esults are more convincing, just as pointed out by Kuznetsova and

tepanov [154] . 

Fig. 7 (b) illustrates the vibrational radiative lifetimes of the

 

2 � + electronic state of CN. One of them is obtained by experi-

ental measurement and the others are derived from calculations.

s shown, our calculated radiative lifetimes are in very good agree-

ent with theoretical results from Refs. [26,28,82,126] except those

f Ref. [125] . Compared to the only experimental results measured

y Duric et al. [128] we can find in the literature, a good agree-

ent is observed for v ′ = 2, 3, 4, 5 and a large discrepancy of

bout 7% is observed for v ′ = 0, 1. Note that the Violet system and

he LeBlanc system are both considered to contribute to the radia-

ive lifetimes of CN B 2 � + electronic state. As for these two elec-

ronic transition systems, Knowles et al. [82] and Bauschlichler et

l. [155] give two different sets of ETMFs, which both provide a

ood reproduction of the experimental radiative lifetimes. Here we
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Fig. 8. Comparison of the vibrational radiative lifetimes calculated in the present work for C 2 , (a) A 1 u electronic state with the results of Refs. [22,26,28,85,130–133] , (b) 

b 3 �−
g electronic state with the results of Refs. [26,28,83,85] , (c) d 3 g electronic state with the results of Refs. [26,28,133–137] , (d) D 1 �+ 

u electronic state with the results of 

Refs. [85,138] . 
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select the ETMFs of Ref. [82] . It also should be noted that the re-

sults in Fig. 7 (b) by da Silva and Dudeck exclude the LeBlanc sys-

tem. 

5.7. C 2 transitions 

For the Philips, Ballik and Ramsay, Swan and d 3 g − c 3 �+ 
u 

systems, we select the latest “ab-initio” ETMFs of Ref. [83] be-

cause they cover a wider range of internuclear distances than

those of other references. In the case of Philips system, it has

been widely studied theoretically and experimentally. Fig. 8 (a)

shows the vibrational radiative lifetimes of the A 

1 u electronic

state of C 2 . As shown, the present calculated radiative lifetimes

are in quite good agreement (of about 4%) with calculations of

Refs. [22,26,28,130] except those of Ref. [85] . However, our results

are significantly lower than available experimental results of Refs.

[131–133] , though the radiative lifetimes for v ′ = 0, 1, 5 −8 are in-

side the error bars of Ref. [132] . for the Ballik and Ramsay sys-

tem. Fig. 8 (b) gives some theoretical radiative lifetimes of the b 3 �−
g 

electronic state of C 2 . A very good agreement (within 4%) between

the present radiative lifetimes and the ones calculated by Kokkin

et al. [83] is observed for v ′ = 0, 1, 2. Nevertheless, discrepancies

of about 36% (or 88%) remain between our calculated results and

theoretical results reported in Ref. [28,85] (or Ref. [26] ) relative to

present radiative lifetimes. As to the two other systems, they both

contribute to vibrational radiative lifetimes of d 3 g electronic state

of C 2 and the detailed comparisons between the present radiative

lifetimes and various results in the literature are given in Fig. 8 (c).

Moreover, a large deviation among different experimental results

can be seen and our results are in good agreement with the val-

ues of Ref. [133–135] . It should also be noticed that our results are
n excellent agreement with the calculations of Ref. [28] , although

hey deviate greatly from the calculations of Ref. [26] . 

Concerning the Mulliken system, the theoretical ETMF of Bruna

nd Wright [84] is used in this paper. The radiative lifetimes cal-

ulated from this ETMF are slightly higher than the experimental

esults of Ref. [138] , but inside the error bars, just as shown in

ig. 8 (d). And a slight higher difference (about 5%) can be found in

ur calculated results compared to the theoretical results from Ref.

85] . 

For the Deslandres–D’Azambuja system, we use the ETMF of

ef. [85] rather than that of Cooper and Nicholls [156,157] , as rec-

mmended by Lino da Silva and Dudeck [36] , who consider that

he results of Ref. [85] are more accurate. However, there is a de-

iation of 6% between this ETMF and experimental value [85] . 

As for the Fox–Herzberg system, Chabalowski et al. [85] and

ooper et al. [156] give two ab-initio ETMFs, which are very close.

he ETMF of Ref. [85] is chosen in this paper because it covers a

ider range of internuclear distances. 

.8. CO 

+ transitions 

For Comet–Tail, Baldet–Johnson and First-negative systems, we

elect the ETMFs of Ref. [81] , which enable to obtain a good agree-

ent with the available experimental radiative lifetimes, just as

hown in Fig. 9 . For the A 

2 i electronic state, the calculated ra-

iative lifetimes are in quite good agreement with the theoretical

esults of Ref. [28] and the experimental results of Refs. [139,140] .

or the B 2 � + electronic state, a very good agreement (of about

%) between our results and the calculations of Ref. [28] is ob-

erved for v ′ = 0 −2, whereas the radiative lifetime at v ′ = 3 of Ref.

28] is quite larger than the present result and experimental results

f Refs. [141–143] 
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Fig. 9. Comparison of the vibrational radiative lifetimes calculated in the present work for CO + , (a) A 2 i electronic state with the results of Refs. [28,139–140] , (b) 

B 2 � + electronic state with the results of Refs. [28,139–143] . 

Fig. 10. Comparison of the vibrational radiative lifetimes calculated in the present work for H 2 , (a) B 1 �+ 
u electronic state with the results of Refs. [173,158–162] , (b) C 1 u 

electronic state with the results of Refs. [158–160,173] . 
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.9. H 2 transitions 

For the two electronic transition systems of H 2 considered here,

e use the ETMFs given by Drira et al. [86] . Vibrational radiative

ifetimes of the B 1 �+ 
u and C 1 u electronic states are calculated

ith the ETMFs and our vibrational wave functions. Comparisons

etween our calculated results and experimental data are shown

n Fig. 10 (a) for the B 1 �+ 
u electronic state. A quite good agreement

etween the calculated radiative lifetimes and the ones measured

y Hesser et al. [160] and Schmoranzer et al. [162] is observed,

hile a large discrepancy of about 33% is observed for v ′ = 9–11.

his discrepancy was explained by Fantz et al. [173] who believed

hat different input spectroscopic constants and ETMFs will lead to

arge deviations for higher vibrational levels. As shown, the latest

heoretical results of Fantz et al. [144,173] are also chosen to val-

date our calculated results and an excellent agreement is noticed

n Fig. 10 (a). For the C 1 u electronic state, our calculated radiative

ifetimes agree well with some theoretical results [158,159,173] , but

 large discrepancy is observed for v ′ = 0 −3 compared to the only

xperimental results [160] we can find in the literature, as shown

n Fig. 10 (b). 

. Conclusions 

In conclusion, we have provided more detailed and accurate

ables of the radiative transition probabilities for the main di-
tomic electronic transition systems contributing to the radiative

rocesses encountered in plasmas produced in Earth, Mars and

upiter atmospheric entry. The main electronic systems of N 2 , N 

+ 
2 

,

O, O 2 , CO, CO 

+ , CN, C 2 and H 2 have been investigated. The poten-

ial energy curves of each electronic state of interest were recon-

tructed using the RKR inversion procedure based on the most up-

o-date spectroscopic constants. Then the radial Schrödinger equa-

ion was solved to obtain the vibrational wave functions. These

esults, together with the latest published “ab-initio” ETMFs were

sed to calculate some tables of radiative transition probabilities

or the main molecular radiative transitions, which are provided

n the supplementary material. These arrays can be used to com-

ute the spectral emission and absorption coefficients for the di-

tomic bound-bound transitions. The radiative lifetimes can also

e used to research the collisional-radiative processes in nonequi-

ibrium plasmas. 
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Table A.1 

Klein–Dunham coefficients for the selected states of the N 2 molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 4 5 6 E diss r e v max 

X 3 �+ 
g [37,163] 0 0.0 2358.56 14.317 −3.31E −3 −1.95E −4 79886.6 1.097685 15 

1 1.998236 1.730986E −2 −3.01203E −5 −6.927E −8 

2 5.73729E −6 8.951E −9 

A 3 �+ 
u [38,163] 0 50203.6 1460.94 13.98 2.4E −2 −2.56E −3 30135.8 1.2866 16 

1 1.4539 1.75E −2 −1.4E −4 

2 5.46E −6 1.1E −7 

B 3 g [38,163] 0 59619.3 1734.025 14.412 −3.3E −3 −7.9E −4 4.2E −5 −1.68E −6 39811.7 1.2126 21 

1 1.63772 1.793E −2 −1.0E −4 5.0E −6 −2.1E −7 

2 5.88E −6 1.3E −8 

W 

3 �u [39,163] 0 59808 1506.5 12.5 39301 1.2784 17 

1 1.47 1.71E −2 

B ′ 3 �u [40,163] 0 66272.4 1516.6 12 42452 1.2784 21 

1 1.473 1.666E −2 

2 5.55E −6 

C 3 u [41,163] 0 89136.9 2047.79 28.942 2.25 −0.551 10140.7 1.14869 4 

1 1.8268 2.4E −2 1.9E −3 −6.0E −4 

2 5.1E −6 2.2E −6 −1.3E −6 2.4E −7 

a 1 g [40,163] 0 69283.1 1694.2 13.949 49051 1.2203 10 

1 1.6169 1.793E −2 

2 5.89E −5 

Table A.2 

Klein–Dunham coefficients for the selected states of the N 

+ 
2 

molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 4 5 6 7 E diss r e v max 

X 2 �+ 
g [36,164] 0 0.0 2197.95 16.0906 4.0E −3 −6.1E −3 3.9E −4 1.4E −5 2.0E −7 71368 1.1191 21 

1 1.92286 1.8634E −2 −6.77E −5 −2.32E −6 

2 5.92E −6 3.9E −8 

A 2 u [36,164] 0 9167.46 1900.73 14.9618 1.12E −2 −0.27E −3 62352 1.1772 27 

1 1.73539 1.8652E −2 −6.0E −5 −1.1E −6 

2 5.6E −6 

B 2 �+ 
u [36,164] 0 25461.11 2406.67 23.3782 −0.3 −6.67E −2 45799 1.0771 4 

1 2.07492 2.088 −5.0E −4 −8.8E −5 

2 6.17E −6 

C 2 �+ 
u [36,165] 0 64609.05 2069.4 −8.3 1.6E −2 26057.15 1.2628 6 

1 1.5098 −1.0E −3 

Table A.3 

Klein–Dunham coefficients for the selected states of the NO molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 4 5 6 7 E diss r e v max 

X 2 r [42] 0 0.0 1904.13 14.08836 1.00467E −2 −1.5331E −4 −9.769E −6 −1.9142E −7 5.2734E −9 53344 1.15077 22 

1 1.704888 0.01754158 1.4886E −5 −4.7275E −8 1.0108E −9 −6.0557E −11 

2 5.466E −6 1.7032E −8 

A 2 � + [40] 0 43965.7 2374.31 16.106 4.65E −2 28603 1.0634 8 

1 1.9965 1.915 

2 5.4E −6 

B 2 r [43] 0 45932.3 1042.4 7.7726 0.11596 −3.9577e −3 26637 1.4167 28 

1 1.1244 0.013433 2.991Ee −5 3.177E −6 

2 5.2E −6 1.4E −8 

C 2 r [43] 0 52179.8 2381.3 15.702 7.253E −2 20383 1.062 9 

1 2.0155 3.244E −2 

2 5.8E −6 1.8E −8 

D 2 � + [40] 0 53084.7 2323.9 22.885 0.75 −0.22 19484 1.0618 5 

1 2.0026 2.175 

2 5.9E −6 5.9E −8 

B ′ 2 � [44] 0 60364.2 1217.4 15.61 12205 1.302 6 

1 1.332 2.1E −2 

E 2 � + [40] 0 60628.8 2375.3 16.43 11940 1.06615 4 

1 1.9863 1.82E −2 

2 5.6E −6 

Table A.4 

Klein–Dunham coefficients for the selected states of the O 2 molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 4 5 6 7 E diss r e v max 

X 3 �−
g 0 0.0 1580.1932 11.980804 0.047474736 −1.72748E −3 42048 1.20752 19 

[23,163] 1 1.445622 0.01593268 6.406456E −5 −2.846158E −6 

2 4.839E −6 2.06E −6 

B 3 �−
u 0 49793.3 709.0577 10.61408 −0.059212435 −0.023974994 2.2067951E −3 −1.5990957E −4 4.4274814E −6 8556.5 1.60426 21 

[35,163] 1 0.818975 0.0119225 −6.30472E −4 1.57426E −6 6.70586E −6 −9.35318E −7 2.901E −8 

2 4.55E −6 2.2E −7 
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Table A.5 

Klein–Dunham coefficients for the selected states of the CO molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 4 5 6 7 8 9 E diss r e v max 

X 1 � + 0 0.0 2169.81267 13.2878763 1.04111E −2 6.93664E −5 1.67935E −7 2.05925E −9 −8.488E −10 1.2388E −11 −8.234E −14 90575.3 1.1327 41 

[45,166] 1 1.93128098 1.75044E −2 7.17392E −7 −2.1464E −8 4.4354E −-9 −1.361E −10 1.2458E −12 −2.125E −14 

2 6.12162E −6 −1.0349E −9 1.8498E −10 −2.431E −12 

a 3 r 0 48686.8 1743.41 14.36 −4.5E −2 2.5E −5 41888.6 1.2105 12 

[46,76] 1 1.69124 1.904 −4.1E −5 

2 6.36E −6 4.0E −8 

a ′ 3 � + 0 55825.5 1228.6 10.466 9.1Ee −3 2.59E −3 34842.9 1.3523 9 

[40] 1 1.3446 1.892E −2 

2 6.41E −6 

d 3 �i 0 61120.1 1171.94 10.635 7.85E −2 −1.63E −5 29519 1.3740 10 

[40,76] 1 1.3108 1.782E −2 1.13E −4 

2 6.59E −6 

A 1  0 65075.8 1518.24 19.4 0.76584 −0.14117 0.01434 −8.051E −4 2.36E −5 2.9E −7 25499.6 1.2408 19 

[47,168] 1 1.6115 0.023251 1.5911E −3 −5.716E −4 8.2417E −5 −5.9413E −6 2.1149E −7 2.991E −9 

2 7.29E −6 1.05E −7 

B 1 � + 0 86932.16 2150.41 34.09 3643.14 1.1197 2 

[48] 1 1.96103 2.574E −2 

2 6.477E −6 5.86E −7 

b 3 � + 0 83686.5 2333.9 58.64 5908.5 1.113 2 

[49] 1 1.986 4.2E −2 

Table A.6 

Klein–Dunham coefficients for the selected states of the CO + molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 E diss r e v max 

X 2 � + [56,167] 0 0.0 2214.127 15.094 −1.17E −2 68288.8 1.11514 5 

1 1.976941 1.8943E −2 −3.44E −6 

2 6.313E −6 1.53E −8 

A 2 i [56,167] 0 207332.037 1561.806 13.4785 8.65Ee −3 47556.8 1.24377 8 

1 1.589392 1.9494E −2 −1.17E −7 

2 6.729E −6 −3.84E −8 

B 2 � + [57,81] 0 45876.7 1734.57 28.248 0.399 38279.6 1.16877 2 

1 1.7999 3.025E −2 

2 7.75E −6 2.2E −7 

Table A.7 

Klein–Dunham coefficients for the selected states of the CN molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 4 5 6 7 E diss r e v max 

X 2 � + 0 0.0 206 8.6 834 13.12172 −5.412E −2 −9.83E −5 3.23E −5 63296.6 1.1718073 11 

[54,169] 1 1.8997835 0.01737487 −2.43E −5 −4.92E −7 −1.61E −8 

2 6.41E −6 1.2E −8 

A 2 i 0 9240 1813.26 12.76873 −3.569E −3 1.070745E −4 −4.6648E −6 −2.5273E −7 54053.3 1.2333 20 

[59] 1 1.71591 1.716732E −2 −5.4905E −5 6.759374E −6 5.88513E −7 1.890441E −8 −2.34754E −10 

2 5.93E −6 4.2E −8 

B 2 � + 0 25752 2161.46 18.219 −0.486 0.04 −6.93E −3 4.32E −4 −8.34E −6 56777 1.150 17 

[60,169] 1 1.96891 2.0337E −2 −5.9E −5 −7.71E −5 3.1E −6 

2 6.5322E −6 8.0725E −8 
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Table A.8 

Klein–Dunham coefficients for the selected states of the C 2 molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 4 5 E diss r e v max 

X 1 �+ 
g [50,170] 0 0.0 1855.01 13.555 −0.132 3.57E −3 −1.116E −3 50247.9 1.2425 6 

1 1.8201 1.801E −2 −6.33E −5 −2.06E −6 

2 6.964E −6 6.41E −8 

a 3 u [51,163] 0 716.2 1641.35 11.670 49531.7 1.3119 9 

1 1.6342 1.661 

2 6.44E −6 

b 3 �−
g [52,163] 0 6434.8 1470.4 11.155 1.39E −2 43812 1.36928 6 

1 1.4986 1.631E −2 −4.61E −6 

2 6.1958E −6 6.62E −9 

A 1 u [53,170] 0 8391.3 1608.2 12.055 −0.012 41867 1.3184 8 

1 1.6165 1.687E −2 −5.47E −5 

2 6.494E −6 3E −8 

c 3 �+ 
u [40,163] 0 9124.2 2085.9 18.623 37988.4 1.23 9 

1 1.921 1.255E −2 

d 3 g [54,163] 0 20022.5 1788.22 16.457 −0.501 30225.4 1.2661 10 

1 1.75523 1.907E −2 5.35E −4 

2 6.74E −6 

e 3 g [55,163] 0 40796.7 1106.56 39.26 2.81 −0.127 19643.9 1.5351 4 

1 1.1922 2.42E −2 

2 6.3E −6 

D 1 �+ 
g [40,163] 0 43239.8 1829.57 13.94 39843.5 1.2380 3 

1 1.8332 1.96E −2 

2 7.32E −6 

Table A.9 

Klein–Dunham coefficients for the selected states of the H 2 molecule (all values are in cm 

−1 except r e in Angstrom and v max ). 

Y ij 0 1 2 3 4 5 6 7 8 E diss r e v max 

X 1 
∑ + 

g 0 0.0 4432.29142 −149.2039 12.01408 −2.369503 0.2852839 −0.020446 7.82E −04 −1.27E −05 38163.37 0.74152 14 

[61] 1 61.264895 −4.274626 1.0029705 −0.329079 0.057094 −5.38E −03 2.59E −04 −5.04E −06 

2 −0.04 964 9 0.0106961 −6.00E −03 1.64E −03 −2.18E −04 1.38E −05 −3.35E −07 

3 5.80E −05 −2.84E −05 1.46E −05 −3.05E −06 2.73E −07 −8.75E −09 

4 −7.00E −08 4.25E −08 −1.69E −08 2.39E −09 −1.08E −10 

5 6.39E −11 −3.54E −11 9.45E −12 −6.70E −13 

6 −3.81E −14 1.54E −14 −2.06E −15 

B 1 
∑ + 

u 0 91528.4 1357.19 −20.15 0.46 −0.021 28767.93 1.2894 6 

[62] 1 19.984 −1.115 0.0836 −0.0044 

2 −0.01656 2.08E −3 −0.0 0 013 

C 1 
∏ 

u 0 10 0 089.8 2443.77 −69.524 0.7312 −0.0415 20236.8 1.03346 13 

[62] 1 31.3629 −1.6647 0.0296 −0.00296 

2 −0.0223 0.0 0 074 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. Supplementary material (in .CSV) files 

Supplementary material associated with this article can be

found, in the online version, at doi:10.1016/j.jqsrt.2017.08.010 . The

tables of supplementary material give the Einstein coefficients in

s −1 , absorption band oscillator strengths and Franck–Condon fac-

tors corresponding to the upper v ′ vibrational levels in columns

and the lower v ′ ′ vibrational levels in rows. 
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